A clustering approach for trajectory anomaly detection
编号:88 访问权限:仅限参会人 更新:2021-12-14 11:46:07 浏览:119次 张贴报告

报告开始:2021年12月17日 08:37(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The last decade has witnessed the prevalence of sensor and GPS technologies that produce a sheer volume of trajectory data implying the city dynamics and human behaviors. Detecting trajectory anomaly is undoubtedly one of the most important tasks in trajectory data management since it serves as the foundation of many advanced analyses such as suspicious behaviors identification during the important events. Tremendous efforts have been spent on this topic, however previous works always require time-consuming preprocessing or are susceptible to the model parameters. In this paper, we first measure the similarity between trajectories through dynamic time warping and then resort a robust density based clustering method, ordering points to identify the clustering structure, to distinguish the anomaly cases. The real-world taxi trajectory dataset in Beijing validate the effectiveness of our approach.
关键词
CICTP
报告人
Zhengchao Zhang
Tsinghua University

稿件作者
Zhengchao Zhang Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询