Prediction of Residents' Travel Modes Based on GA-BP Neural Network
编号:64 访问权限:仅限参会人 更新:2021-12-17 10:12:54 浏览:122次 张贴报告

报告开始:2021年12月17日 08:24(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In order to make up for the shortcomings of the traditional transportation mode split model and improve the accuracy of travel mode prediction, this paper uses Genetic Algorithm- Back Propagation (GA-BP) neural network to predict residential travel mode. This paper firstly uses SPSS to analyze the factors that influence the choice of travel mode and studies the influence of individual, family and travel characteristics on the choice of travel modes. Then the paper establishes the GA-BP neural network using Matlab and uses the survey data of residents in a city in southwest China as the examples of analysis. By selecting different numbers of hidden layer neurons, the accuracy of the total prediction and each travel modes’ prediction is compared. The results show that the GA-BP neural network has higher prediction accuracy, which indicates that the GA-BP neural network can be better applied to the prediction of residential travel modes.
关键词
CICTP
报告人
Yaoyao Kong
Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University

稿件作者
KONG Yaoyao Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询