Based on Long Short-term Memory Neural Network for Travel Time Prediction of Expressways Using Toll Station Data
编号:50 访问权限:仅限参会人 更新:2021-12-13 18:32:55 浏览:146次 张贴报告

报告开始:2021年12月17日 08:14(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Based on deep learning methods, especially long short-term memory (LSTM) neural networks, short-term traffic forecasting has achieved explosive growth. This study proposes the Bi-LSTM model to effectively predict travel time. In order to validate the effectiveness of the proposed stacked LSTM, we used 9-day toll station entry and exit data from the expressways of Guangdong province with an updating frequency of 5 min. The experimental result indicates that excessive depths of the model will lead to the increase of loss values. Moreover, the stability of data will affect the prediction accuracy. In addition, compared with other machine learning methods, as well as different topologies of neural networks, the stacked Bi-LSTM neural network has advantages of reliability, accuracy, and stability, which could facilitate travel time prediction.
关键词
Long short-term memory neural network; Travel time prediction; Toll station data
报告人
Deqi Chen
Qingdao University of Technology

稿件作者
deqi chen Beijing Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询