Identifying critical congestion hotspots using network approach: Smart spatial placement of sensors
编号:462 访问权限:仅限参会人 更新:2021-12-03 10:22:01 浏览:139次 张贴报告

报告开始:2021年12月17日 08:07(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T4] Track 4 Transportation Planning and Policy

暂无文件

摘要
In this paper, we explore a novel approach for identifying critical congestion hotspots based on network analysis using the Automatic Number Plate Recognition (ANPR) data in Cambridge, UK. We transform the camera surveillance data into undirected and weighted travel networks and discuss the smart placement of camera sensors based on this case study. Specifically, the paper addresses two questions: (a) How can we use conceptualized travel networks to reveal congestion patterns? (b) Is the placement of the camera sensors efficient and optimal in the case study area? The results show that: (1) The travel network model can effectively identify critical congestion points. Using only 44% of the total cameras, we accurately capture the major congestion hotspots, including the junctions around the urban fringe. (2) The current layout of the camera sensors is redundant in several local areas. We therefore suggest that spatial optimization should be considered for sensor placement in the future. This study sheds new light on revealing urban mobility patterns in relation to travel networks and provide a heuristic tool for decision-makers for advancing smart digitalization in their cities.
关键词
CICTP
报告人
Junqing Tang
University of Cambridge

稿件作者
Junqing Tang University of Cambridge
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询