High-speed railway passenger categorization based on fuzzy clustering
编号:409 访问权限:仅限参会人 更新:2021-12-03 10:20:42 浏览:101次 张贴报告

报告开始:2021年12月17日 09:30(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T3] Track 3 Vehicle Operation Engineering and Transportation Management

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The categorization of high-speed railway passenger value reflects the demand differentiation from passengers. This is essential for high-speed railway price strategy and the revenue optimization. This paper extracts RFM of passenger value as the core features, and analyzes the weight for each core feature based on AHP and high-speed railway expert strategy, then adopts fuzzy clustering algorithm for clustering analysis, finally comes out the passenger value segmentation model. Based on the passenger flow for Beijing-Shanghai high-speed railway, this paper divides the passengers into five categories, which are high-value passengers, growth passengers, commuters, potential passengers and general passengers. This passenger value segmentation and portraits can be applied for both revenue optimization and provide better experience for passengers.
关键词
CICTP
报告人
Lihui Li
China Academy of Railway Sciences

稿件作者
Lihui Li China Academy of Railway Sciences
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询