CNN-based traffic volume video detection method
编号:393 访问权限:仅限参会人 更新:2021-12-03 10:20:22 浏览:113次 张贴报告

报告开始:2021年12月17日 09:23(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T3] Track 3 Vehicle Operation Engineering and Transportation Management

暂无文件

摘要
The traffic volume detection is the base for traffic management and even smart traffic construction. This paper proposes a method based on convolutional neural networks (CNN). Considering the camera always being fixed during traffic volume detection, a shallow residual neural network (ResNet) model is proposed in this paper, which uses road video data to train model parameters and extract vehicles feature. After training, this paper uses it to identify the vehicles, and a core correlation filter is proposed to track the target. Finally, the traffic volume count method is determined by judging whether the target passes through the region of interest (ROI). Compared with other traffic volume detection methods, this method is more suitable for classifying and counting vehicles in free flow because of it’s light weight and reliability. The experiment shows that the model has the recognition accuracy of 95.83% and the effective count rate is 88.37%.
关键词
CICTP
报告人
Tao Chen
Chang'an University

稿件作者
Tao Chen Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询