A CNN-Based Real-Time Parking Space Management and Allocation System at Large Parking Garage
编号:384 访问权限:仅限参会人 更新:2021-12-03 10:20:11 浏览:109次 张贴报告

报告开始:2021年12月17日 09:19(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T3] Track 3 Vehicle Operation Engineering and Transportation Management

暂无文件

摘要
People usually circling around for quite a long time in a large parking garage to find an open parking space due to unevenly distributed available parking spaces. In this paper, we propose a system which uses the convolutional neural network deep learning approach to analysis videos taken at different places in a large parking garage. Our system is able to monitor the availability of each parking space and provide useful information to users about the opening parking spaces in real-time. To evaluate our system, we conduct an empirical analysis based on the data we collected from a parking lot at IKEA in Wuhan. The evaluation results show that our parking space management and allocation system can reduce ineffective vehicle detours, shorten the average time spent on finding an open space. This work also offers useful and deep insights for solving parking problems at centralized and large-scale parking garages.
关键词
CICTP
报告人
yong yang
China Academy of Transportation Science

稿件作者
yong yang China Academy of Transportation Science
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询