Train delay prediction of high-speed railway: shallow extreme learning machine
编号:382 访问权限:仅限参会人 更新:2021-12-03 10:20:07 浏览:106次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Train delay prediction is a significant part of railway delay management, which is also the theoretical basis and the basis of timetable optimization. Thus, a shallow extreme learning machine model is proposed to effectively predict train delays. Specifically, speed limit, percentage of journey, train delays and stations influenced are taken as independent variables. More importantly, having the characteristic of no need to adjust the parameters of hidden layer, the training stage of this model is tremendously simplified. A case study of one busy domestic line is illustrated and the comparison with the random forest model is further done to demonstrate the accuracy of the proposed model. The results show that the proposed model can accurately predict the delay time at the next station the train will arrive from history data, with an accuracy rate of 0.8, outperforming the random forest model with an accuracy rate of 0.6.
关键词
CICTP
报告人
Xinyue Xu
Beijing Jiaotong University

稿件作者
Xinyue Xu Beijing Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询