Research on Power Battery Fault Fusion Diagnosis Based on Deep Learning
编号:337 访问权限:仅限参会人 更新:2021-12-03 10:19:08 浏览:138次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Safety and reliability of power batteries have become the key factors restricting the development of electric vehicles. By using fault tree and FMEA analysis, the common faults of power battery are classified and summarized. Using deep belief network and decision fusion algorithm, a power battery fault diagnosis model based on deep learning is established. The model establishes the DBN network model through the performance parameters of power battery samples, calculates the support and confidence of faults, and combines the decision fusion algorithm to obtain a more accurate fault fusion diagnosis result. BYD E5 power battery fault parameters are used for model data simulation, which validates the effectiveness of the fusion algorithm. The results show that the model has high accuracy and stability for fault classification and diagnosis of power batteries.
关键词
CICTP
报告人
Jiyang XU
Chang'an Universitity

稿件作者
Jiyang XU Chang'an Universitity
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询