Control parameter optimization for automobile cruise control system via improved differential evolution algorithm
编号:289 访问权限:仅限参会人 更新:2021-12-15 13:04:43 浏览:126次 张贴报告

报告开始:2021年12月17日 08:23(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T3] Track 3 Vehicle Operation Engineering and Transportation Management

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In the regulation layer, the Automobile Cruise Control System (ACCS) is responsible for transient lateral maneuvers and closely related to executing steady state. This paper develops an Improved Differential Evolution Algorithm (IDEA) to deal with the control parameter optimization problem for the ACCS. Based on the classical Bayesian decision strategy, a prior probability based sequential chromosome generator is built to partition the problem space and approach the probable solution domain as close as possible. By mimicking the crossover and mutation behaviors among chromosomes, an online adaptive search method is proposed to dynamically adjust the target area of the search group in order to balance between global exploration and local exploitation. Taking advantage of the gradient based trail-and-error method and the global optimized heuristic method, the IDEA can effectively deepen the search area and simplify the parameter tuning process so as to get a well-performed ACCS. A nonlinear automobile model is used as a test bed to verify the feasibility and efficiency of the proposed method. Numerical simulations show that the IDEA optimized ACCS has good performance in terms of both steady state maneuvers and transient maneuvers.
关键词
CICTP
报告人
Bian Qi
School of Automobile, Chang

稿件作者
Qi Bian School of Automobile, Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询