Clustering analysis of lane-changing trajectory
编号:251 访问权限:仅限参会人 更新:2021-12-03 10:17:15 浏览:125次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
To explore the trajectory distribution and movement pattern of the process of lane-changing, the simulation experiment of lane-changing on the freeway based on a driving simulator was performed. The data of the lane-changing trajectory were collected. Then, Spectral clustering, hierarchy(HDBSCAN), distribution-based (gaussian mixture model, GMM) and density-based (DBSCAN) approaches were used to cluster and analyze the lane-changing trajectory data. The trajectory distribution and motion pattern of the lane-changing process were obtained. Meanwhile, the four methods were compared and evaluated, and the optimal lane-changing mode was obtained according to the actual driving situation. The results show that the clustering effect of DBSCAN method is the best among the methods mentioned above and the lane-changing motion pattern is the optimum under the condition that the trajectory-similarity measure is based on the Hausdorff distance. The research results can provide a reference for the trajectory prediction and planning of lane-changing for autonomous vehicles.
关键词
CICTP
报告人
Zhenlong Li
Beijing University of Technology

稿件作者
Zhenlong Li Beijing University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询