Adaptive Traffic Signal Control Based on Asynchronous Q-Reinforcement Learning in Nonlinear Traffic Flow Environment
编号:249 访问权限:仅限参会人 更新:2021-12-03 10:17:12 浏览:122次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In view of the non-linear and dynamic characteristics of traffic flow at urban intersections, a non-linear traffic flow queuing model is proposed. Based on the inherent periodic characteristics of macro traffic flow, an asynchronous Q-reinforcement learning algorithm with two hidden layers of artificial neural networks is designed, so that the vehicle queue length at each entrance lane can be balanced as far as possible. The convergence of the algorithm is analyzed theoretically. Compared with traditional actuated control and linear Q-learning traffic signal control, the effectiveness of the proposed algorithm is verified by taking average delay as performance index.
关键词
CICTP
报告人
xinhai xia
Guangzhou Maritime University

稿件作者
xinhai xia Guangzhou Maritime University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询