Cascade R-CNN for 3D Object Detection in Autonomous Driving
编号:242 访问权限:仅限参会人 更新:2021-12-03 10:17:03 浏览:127次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
3D object detection plays an important role in autonomous driving, which provides 3D location information of targets for subsequent decision-making modules. Existing 3D object detection algorithms(eg, Stereo R-CNN) mostly use two-stage networks which causes large computation cost which limitating their use scenarios. Some scholars proposed CenterNet in an anchor-free way for conducting 3D object detection and achieved impressive performance. Therefore, this paper proposes a cascade framework for 3D object detection based on key points. The framework is divided into two stages. The first stage processes the stereo image input using CenterNet as the backbone with additional branch to obtain the orientation, dimension and 3D location. In the second stage, cascade geometric constraints are utilized to refine the 3D box output by filling out the false positive in previous stage. Experiments show that the proposed method can achieve better performance on the kitti 3D benchmark and improve the network efficiency.
关键词
CICTP
报告人
tongtong zhao
State Key Laboratory of Automotive Simulation and Control, Jilin University

稿件作者
tongtong zhao State Key Laboratory of Automotive Simulation and Control, Jilin University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询