Research on Fleet Control Strategy in Mixed-Autonomy Traffic
编号:205 访问权限:仅限参会人 更新:2021-12-03 10:16:13 浏览:132次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
With the increasing quantity of private cars, the traffic congestion problem is getting more and more seriously. Cooperative control strategy for connected and autonomous vehicles (CAVs) has been considered as an effective way to improve road traffic flow quantity. This paper extends the thought which uses deep reinforcement learning (RL) to create controllers for mixed-autonomy traffic. Specifically, based on Bayesian network, a formation strategy is proposed to decide the number and formation of the vehicle fleet. Then the control policies of the single vehicle in the fleet are derived by deep reinforcement learning. Simulation has been carried out to show the performance of the proposed algorithm.
关键词
CICTP
报告人
Yongxing Cao
Wuhan University of Technology

稿件作者
Yongxing Cao Wuhan University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询