Lane change intention recognition for intelligent connected vehicle using trajectory prediction
编号:174 访问权限:仅限参会人 更新:2021-12-03 10:15:33 浏览:120次 张贴报告

报告开始:2021年12月17日 09:24(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
In high-speed automatic driving scenarios, the recognition of lane change intention of surrounding vehicles is a key issue. Most studies adopted relevant features and classification algorithms to predict lane change maneuver. These conventional methods are effective in frequent lane change scenarios. However, considering the variance of individual driving characteristics and measurement uncertainty, false intention recognition remains a major problem to be resolved. Hence we proposed an approach to reduce false lane change recognition by introducing the predicted trajectories of the target vehicles. A rule-based approach is used to infer an initial lane change intention and a sampling-based approach generated a predicted trajectory according to the inferred intention. Considering the physical inertia, a constant acceleration motion model is used to generate another reference trajectory. The preparatory lane change intention updates in real time if the predicted trajectory deviates from the reference trajectory. Experiment results demonstrate the capacity of proposed approach to improve the performance of the lane change intention recognition.
关键词
CICTP
报告人
diange yang
Tsinhgua University

稿件作者
diange yang Tsinhgua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询