Key Data Source Identification Method Based on Multi-Source Traffic Data Fusion
编号:171 访问权限:仅限参会人 更新:2021-12-03 10:15:29 浏览:112次 张贴报告

报告开始:2021年12月17日 09:22(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
The sensitivity of the traffic detector or the influence of the external environment will cause different degrees of data missing or abnormal. In addition, the traffic parameters collected by different traffic detectors are different. Therefore, it is very important to identify key data sources for multi-source data fusion for different research purposes. This paper establishes a key data source evaluation system, and puts four evaluation indicators of data integrity, data dispersion, data repair ability and data support degree, and calculates the index weight by the entropy weight method. Taking the geomagnetic data, video bayonet data and floating car data of Jinan City as examples, taking the traffic situation discrimination as the research purpose, selecting the travel speed as the fusion index, the case analysis is carried out to verify the effectiveness of the key data source identification method proposed in this paper.
关键词
CICTP
报告人
Shuo Li
山东交通学院

稿件作者
Shuo Li 山东交通学院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询