Multi-modal adaptive signal control based on traffic information extraction technique: a reinforcement learning approach
编号:161 访问权限:仅限参会人 更新:2021-12-03 10:15:16 浏览:112次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The rapid growth of vehicle-to-infrastructure (V2I) enables the efficient and timely communication at the signalized intersection for the multi-mode traffic participants: such as emergency vehicles, transit bus, commercial trucks, and passenger cars. This study proposes a framework for adaptive signal control to address the multi-mode traffic control problem. We develop a method to extract the aggregate information for the intersection traffic state representation from massive data collected by the central controller. This information extraction technique can achieve a balance between information loss and heavy computation burden. Then an offline adaptive signalized strategy using reinforcement learning is formulated to provide the real-time signal control plans using online traffic data as input. This algorithm enables the signal controller to respond timely to priority requests from different modes of traffic. Finally, the simulations are implemented under both under-saturated and oversaturated traffic conditions to validate the algorithm efficiency under stable and unstable traffic conditions. Finally, the numerical experiments show that, compared to the optimized fixed time plan (Synchro), the proposed method can reduce delay for different vehicle modes.
关键词
CICTP
报告人
shurong li
Beijing Jiaotong University

稿件作者
shurong li Beijing Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询