A SLAM method to Improve the Performance of Unmanned Vehicle
编号:149 访问权限:仅限参会人 更新:2021-12-03 10:14:59 浏览:128次 张贴报告

报告开始:2021年12月17日 09:15(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Intelligent Vehicle Infrastructure Cooperative System is the latest development direction of intelligent transportation, and autonomous navigation technology is the key technology in the field of intelligent transportation. The research of SLAM is especially necessary. However, it is difficult to establish an accurate priori noise model based on Kalman filter for SLAM algorithm. To solve this problem, this paper proposes a fast SLAM algorithm based on improved geese particle swarm optimization algorithm, which effectively improves the local part of the particle optimal and precocious problems. The algorithm of the geese group particle swarm optimization algorithm is improved, the position update formula is designed, and the geese position update is used instead of particle resampling to update the position of the unmanned vehicle . Through matlab simulation experiments and experiments with real datasets, the improved algorithm effectively improves the accuracy of positioning and mapping compared with the standard PSO-FASTSLAM, and verifies the superiority of the algorithm,there is certain practical value for further research on unmanned vehicle. Keywords: SLAM, geese particle swarm algorithm, PSO-SLAM
关键词
CICTP
报告人
yalin Yang
chang'an University

稿件作者
yalin Yang chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询