Utilizing Artificial Intelligence in Vehicle Speed Modeling
编号:134 访问权限:仅限参会人 更新:2021-12-14 23:12:22 浏览:124次 张贴报告

报告开始:2021年12月17日 09:09(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Speed prediction is essential for a wide range of traffic control measures, such as proactive control. Moreover, the estimation of individual vehicle speed enables more accurate traffic optimization and thus, is vital in the design of proactive traffic control method. Most of the previous studies investigated the speed prediction relying on macroscopic traffic data since there is a difficulty in obtaining realtime microscopic traffic data. This paper proposes a novel methodology bases on the kinematical characteristics of steady-state traffic flow for predicting the individual vehicle speed utilizing artificial intelligence, such as neural network and support vector machine. The microscopic and macroscopic traffic data sets used to train, test and validate were collected at a freeway stretch in the real world. The evaluation of the proposed model indicates that the proposed model is contributed to predicting individual vehicle speed.
关键词
CICTP
报告人
Huahui Xie
Fuzhou University

稿件作者
Huahui Xie Fuzhou University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询