A Two-Stage Approach for Flight Departure Delay Forecasting Using Ensemble Learning
编号:122 访问权限:仅限参会人 更新:2021-12-03 10:14:24 浏览:136次 张贴报告

报告开始:2021年12月17日 08:59(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Accurate flight departure delay forecasting is essential for reliable travel scheduling in intelligent air transportation systems. A two-stage approach is proposed to classify flight departure delay in the future for airports. We first use a clustering algorithm to set the classification rule according to flight departure delay extracted from history information. In the second stage, several state-of-the-art ensemble learning models, which include random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), are adopted for the flight departure delay classification. The flight departure delay classification models are trained and validated on flight data collected from Beijing Capital International Airport (PEK). The results show that the LightGBM model performs the best among the four employed models for classifying the flight departure delay. The performance comparison of the models can provide valuable insights for researchers and practitioners.
关键词
CICTP
报告人
Bin Yu
Beihang University

稿件作者
Bin Yu Beihang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询