Prediction of Vehicle Instantaneous Speed in the Car-Following Based on Machine Learning Approaches
编号:11 访问权限:仅限参会人 更新:2021-12-01 11:58:56 浏览:191次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The instantaneous speed prediction plays a crucial role in the autonomous driving, and it is directly affected to the safety of the autonomous vehicle. It is necessary to study instantaneous speed prediction approaches in the car-following. In this study, different machine learning approaches are used to predict the instantaneous speed in the car-following (i.e., Support Vector Regression, Random Forest, XGBoost and AdaBoost regression models). And then different model evaluation criteria are selected to assess the model’s prediction power, including mean absolute error, mean absolute percentage error, root mean square error and variance of absolute percentage error. The denoising trajectory data of the Next Generation Simulation (NGSIM) project is used, and the grey relational analysis is used to extract the feature variables. The results indicate that XGBoost Model can effectively improve the accuracy of instantaneous speed prediction in the car-following.
关键词
暂无
报告人
Shuaiyang Jiao
Chang’an University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询