110 / 2022-04-25 15:15:08
Use of recycled concrete aggregates as carriers for concrete self-healing by high urease activity bacteria
concrete crack, self-healing, microbial induced carbonate precipitation, recycled concrete aggregate, water permeability
摘要录用
Jing Xu / Tongji University
Microbial induced carbonate precipitation (MICP) has become one of the most attractive strategies to achieve self-healing of concrete cracks in recent decades. In order to provide a moderate space for bacteria in the harsh environment of concrete, the incorporation of protective carriers is a necessity. In this study, the microbial urease activity at different generation of propagation in the selected culture medium was first investigated, followed by exploring the potential of using recycled concrete aggregates (RCAs) as microbial carriers, considering the porous nature of RCAs. The specific urease activity of bacteria at 48 h kept as high as 2.4×10−8 mM·min−1·cells−1 even after 5 generations of propagation in the selected culturing medium. RCAs would not result in a loss of ureolytic activity after immobilization and were capable of retaining bacterial viability during concrete mixing. Compared with concrete without any healing agents or with only substrates and calcium source, the one with bio-agents loaded in RCAs completed most of the crack healing in the first week. When the initial crack widths were less than 0.6 mm, the average crack healing ratio and the crack area healing ratio were 71% and 84%, respectively, for microbial self-healing. The depth of crack healing was 17.8 mm as indicated by the microbial precipitates on the crack wall. After microbial self-healing, the compressive strength regain ratio achieved 99.7% while the water tightness regain ratio attained 99.2%, and the cracks were filled with densely packed irregular rhombohedral-shaped crystals consisting of calcite and a small amount of vaterite.
重要日期
  • 会议日期

    03月11日

    2023

    03月13日

    2023

  • 02月17日 2023

    初稿截稿日期

  • 02月17日 2023

    提前注册日期

  • 03月13日 2023

    注册截止日期

主办单位
深圳大学
香港理工大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询