Fast DC Optimal Power Flow Based on Deep Convolutional Neural Network
编号:82 访问权限:仅限参会人 更新:2022-05-16 09:41:51 浏览:179次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The optimal power flow is the cornerstone of the operation and management of electric power systems. However, the stochastic and intermittent uncertainty due to the proliferation of renewable energy resources (RES) poses a non-trivial challenge to timely obtain the optimal operation point of the power system. To address the computational burden issue, a deep convolutional neural network (DCNN) model is proposed to learn the mapping from the injections to the optimal objective. The DCNN reduces the training parameters as well as improves the approximation accuracy. IEEE 14/118/300 bus power systems are conducted, and the optimal power flow model is solved by Gurobi/Python. Simulation results show that DCNN speeds up the calculation time by up to 100 times in comparison to the state-of-the-art solver and simultaneously maintains the required accuracy.
关键词
Optimal power flow, deep convolutional neural network, renewable energy, uncertain
报告人
WUHuayi
PolyU

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询