Optimal-Parameters-Based Model Predictive Position Control of Planar Switched Reluctance Motors
编号:607 访问权限:仅限参会人 更新:2022-05-22 17:56:56 浏览:231次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In this article, an adaptive simulated annealing particle swarm optimization (ASAPSO) algorithm is proposed to optimize the parameters of the model predictive position control (MPPC) algorithm for planar switched reluctance motors (PSRMs). Based on the self-designed PSRM in our lab, the dynamic model of discrete state space equation is established, and then the prediction model is established and the cost function is defined, the optimal control sequence is calculated. In addition, the ASAPSO algorithm was used to optimize the parameters of the MPPC. The algorithm adopted the nonlinear dynamic inertia weight coefficient to balance the global search ability and local improvement ability of particles. The hyperbolic tangent function is used to control the acceleration coefficient and balance the self-cognition ability of particles. Simulated annealing operator is introduced to increase the ability of particles to jump out of local optimum. Finally, the optimal parameters obtained by the ASAPSO algorithm are used for simulation verification, and compared with the traversal method. The simulation results verify the effectiveness of the proposed MPPC based on optimal parameters.
 
关键词
暂无
报告人
KangQi
深圳大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询