A Forecasting Method for EV Charging Demand Considering Refined Division of Functional Areas
编号:477 访问权限:仅限参会人 更新:2022-05-21 15:36:55 浏览:172次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The dynamic spatial-temporal distribution prediction of electric vehicle charging demand is of great significance for the charging operation management in the power grid. To achieve accurate prediction of charging load distribution in urban areas, firstly, the characteristics of different functional areas in the city are considered. Then, the POI data in Baidu Map platform is used to carry on the data mining and modeling, which helps model the division of urban functional areas. Then, a spatial-temporal distribution model of EV charging demand is established based on the theory of Agent-cellular automata (CA) to accurately describe the mathematical model for EVs. The model contains the changes of location and state of charge (SOC) in the drive. Finally, a certain city area is selected as an example to conduct the charging demand load prediction under multiple scenarios. The results show that the proposed model can effectively predict the spatial-temporal distribution of charging demand loads for different date types.
关键词
electric vehicle; the division of functional areas; Agent–cellular automata; styling; Charging needs
报告人
JuPEIYUAN
Nanjing Institute of Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询