Spectrum sensing is a crucial technology for cognitive radios and cognitive wireless sensing networks. In order to improve spectrum utilization and avoid interference to primary users, it is necessary to detect whether the spectrum is occupied accurately. This paper proposes a sequence-to-sequence model based on WaveNet structure for spectrum sensing as a practical solution and obtaining the occupied time location. Compared with the traditional Convolutional Neuron Network, the model proposed in this paper can be based on the signal data, reducing the dimension of input signal, and alleviating the computational burden. Furthermore, the model considers the data sequence dependence on time to obtain a comprehensive judgment, and achieves the classification of the corresponding sampling point data on each time step to realize spectrum sensing and time location. Based on the data-sequence analysis, researchers can develop more efficient wireless sensor management strategies. The model alleviates gradient-vanishing and gradient-exploding problems in longtime dependence or long time-series data that generated by high sampling data. Reducing the computational cost and energy consumption of wireless sensor networks is another novel feature of the proposed model. Compared with RNN models, the proposed model reduces the number of model parameters on a large scale. At the same time, the model can achieve the parallel signal processing and energy-saving optimization without extra parameters.
05月27日
2022
05月29日
2022
初稿截稿日期
注册截止日期
报告提交截止日期
2025年05月16日 中国 Changsha
2025 IEEE 8th International Electrical and Energy Conference2023年05月12日 中国 Hefei
2023 IEEE 6th International Electrical and Energy Conference2022年05月27日 中国
2022 年电气电子工程师学会电力与能源分会(IEEE PES)年会2021年05月28日 中国 Wuhan
2021中国电力和能源国际会议2018年11月04日 中国
2018中国电力和能源国际会议2017年10月25日 中国 东城区
2017中国电力和能源国际会议
发表评论