An Integrated Optimization Design Method of Single-Phase PV Inverter Based on Machine Learning
编号:25 访问权限:仅限参会人 更新:2022-05-16 08:51:29 浏览:182次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In order to minimize the filter mass and loss, optimize controller parameters, this paper proposes an integrated optimization design method for filter and controller of single-phase grid-connected PV inverter based on machine learning (ML). Support vector machine (SVM) is used to judge the feasibility of the filter design scheme, and artificial neural network (ANN) establishes the mapping relationship from system parameters to optimization goals. In the model, the optional capacitance data is discretized, ensuring that the results are current commercial models. Similarly, the parameters of the current loop controller are optimized by ML to obtain the minimum current ripple. In this paper, the performance comparison of the system with different filter and controller design schemes is conducted in simulation, the results indicate the validity and superiority of the proposed method.
关键词
Support vector machine(SVM); artificial neural network(ANN); optimal filter design; single-phase inverter
报告人
Wen-QingQu
student 哈尔滨工业大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询