Short-term load forecasting for industrial users based on Transformer-LSTM hybrid model.
编号:152 访问权限:仅限参会人 更新:2022-05-17 11:22:33 浏览:291次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Accurate load forecasting for industrial users is crucial segment of promoting the economic operation and green transition of modern power systems, which is helpful to speeding up the process of achieving carbon peak and neutrality goals proposed by China. However, it is challenging to predict the individual industrial load precisely by causes of its significant volatility and randomness. This study proposes a novel short-term load forecasting hybrid model that is integrated of Transformer model and long short-term memory (LSTM) network for industrial users. Transformer model is capable to seize intricate dynamic relationship in long-term temporal data efficiently and accurately, which is used for feature extraction. LSTM is known to be good at time series forecasting, and it is used to forecast industrial users’ loads. The superiority of the proposed method is verified by experiments using three real data sets from different industries in China and Ireland. The analysis results of the three examples show that the proposed model has an obvious improvement in prediction performance compared with the comparison model.
关键词
Short-term load forecasting;industrial users;Transformer model;long short-term memory (LSTM)
报告人
Yuhao Chen
Changsha University of Science & Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询