Warning model of coal mine ventilation disaster based on the combination of k-neighborhood-gray correlation method and its application
编号:142 访问权限:仅限参会人 更新:2022-05-12 20:54:31 浏览:699次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
 The abnormality of the mine ventilation system can reflect the risks and hidden dangers existing in the mine production system. By combining the basic information of the demonstration mine with the ventilation monitoring data and production status, the k-nearest neighbor is used to study the abnormal change characteristics of monitoring data of mine ventilation system in different ventilation periods, and a ventilation hazard warning model was constructed and the models were compared and validated. In addition, the dominant factors of the warning level were obtained by combining the gray correlation method. The results show that under different ventilation periods, the accuracy of the warning model is over 95%, which has good application and promotion value. The speed is the main indicator that affects the warning level. The research of this paper can provide theoretical support for realizing the intelligent management of mine risk in advance and short-term early warning.
关键词
coal mine ventilation; disaster warning; k-nearest neighbor; grey relational analysis; intelligent management
报告人
Lei WANG
China Coal Shaanxi Yulin dahaize Coal Industry Co., Ltd

稿件作者
Lei Wang China Coal Shaanxi Yulin dahaize Coal Industry Co., Ltd
Lei Chen China Coal Shaanxi Yulin dahaize Coal Industry Co., Ltd
Lei Gao China Coal Shaanxi Yulin dahaize Coal Industry Co., Ltd
Huanhuan Zhang China Coal Information Technology (Beijing) Co., Ltd
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月26日

    2022

    05月27日

    2022

  • 05月03日 2022

    初稿截稿日期

  • 05月26日 2022

    报告提交截止日期

  • 05月28日 2022

    注册截止日期

主办单位
中国矿业大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询