A visual saliency-based anomaly detection algorithm for mineral materials
编号:100 访问权限:仅限参会人 更新:2022-04-10 22:31:44 浏览:393次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
There may be scratches, dislocations, color, and texture changes in mineral materials such as wood, steel pipes, and fabrics in the mine production process, which influences the production efficiency of mine to some extent. To solve this problem, better detect anomalies and improve production efficiency, this paper proposes a detection algorithm for mineral material anomalies based on visual saliency. In our algorithm, first, we perform morphological processing and median filtering on the input image of mineral materials with anomalies, highlighting the area that has anomalies. Secondly, we divide the processed image into multiple overlapping image blocks to obtain the feature template of the image, use the template to obtain the visual saliency of each part of the image blocks, stitch the images together, form a visual saliency map, and initially locate the anomaly area. Finally, we combine the visual saliency map with superpixel segmentation to pinpoint the anomaly area further. The experiments prove that our algorithm has a high recognition accuracy and good recognition effect. The algorithm can be directly applied to the real-time monitoring of mines.
关键词
mineral materials, anomaly detection, visual saliency, superpixel segmentation
报告人
洋迪 王
北京邮电大学

稿件作者
文明 郭 北京邮电大学学计算机学院;新疆工程学院
洋迪 王 北京邮电大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月26日

    2022

    05月27日

    2022

  • 05月03日 2022

    初稿截稿日期

  • 05月26日 2022

    报告提交截止日期

  • 05月28日 2022

    注册截止日期

主办单位
中国矿业大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询