58 / 2021-10-14 21:20:01
LSTM neural network models for the analysis of flexible cables and risers
Flexible risers; LSTM neural network; Nonlinear response prediction; Top tension
摘要待审
李润东 / 大连理工大学
阎军 / 大连理工大学
Flexible risers and cables are important components of offshore oil and gas production platforms. Usually complex Finite-Element time-domain simulation tools are used to obtain its serious nonlinear dynamic response. Such a method usually takes more time to calculate. It is considered that the neural network can accurately predict and quickly respond to the nonlinear behavior. In this paper, according to the Long Short-Term Memory (LSTM) neural network model, the past values of floating body displacement and expected response is taken as input information. A LSTM neural network model for predicting the response of dangerous points at the top of flexible pipe cable based on floating body motion is established. Through an example, the effects of the neuron number and layer number of neural network on the accuracy of prediction are studied. The effects of delay time and time distribution of training samples on the prediction results are discussed. The results indicate that the trained LSTM model can accurately predict the response of flexible risers and cables.

 
重要日期
  • 会议日期

    10月22日

    2021

    10月25日

    2021

  • 09月15日 2021

    提前注册日期

  • 10月25日 2021

    注册截止日期

主办单位
SUT 中国分会
大连理工大学
中国石油大学(北京)
协办单位
辽宁省力学学会
大连市科学技术协会
工业装备结构分析国家重点实验室
海岸和近海工程国家重点实验室
橡塑制品成型数值模拟与优化学科创新引智基地
大连理工大学宁波研究院
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询