21 / 2021-07-13 15:35:59
Bias impact factor analysis based on satellite radiation data
remote sensing data,feature selection,bias impact factor,XGBoost algorithm
全文待审
曹丹阳 / 北方工业大学
陈明珠 / 北方工业大学
    The quality evaluation of remote sensing data plays an important role in the application and development of remote sensing technology. It is also an important hub for the development of remote sensing instruments and the application of remote sensing data. It can not only make a reasonable analysis of the results of previous work, but also provide a scientific basis for the launch of subsequent satellites. With the continuous development of satellite remote sensing technology in China, remote sensing data have been more widely used in many fields, so there are higher requirements for the quality of satellite data. Therefore, the selection of key impact factors is of great importance to the simulation of rapid radiation transmission, and is also the key to the prediction effect of the model. Based on Aqua MODIS satellite data, aiming at the existing problems of traditional feature selection methods and the advantages of XGBoost method, the importance of features of XGBoost algorithm was calculated and ranked, and then the key influencing factors of satellite radiation data deviation were screened out. Experiments show that the proposed method improves the accuracy of remote sensing data quality analysis, and the accuracy and stability of on-orbit calibration are significantly improved.
重要日期
  • 会议日期

    10月08日

    2021

    10月10日

    2021

  • 09月20日 2021

    提前注册日期

  • 10月10日 2021

    注册截止日期

  • 12月31日 2021

    初稿截稿日期

主办单位
中国航天科工集团有限公司科技委
绍兴市人民政府
浙江理工大学
中国仿真学会
中国计算机自动测量与控制技术协会
中国航天第二专业(导弹总体)信息网
中国航天第三专业(空天动力)信息网
中国航天第四专业(导航与控制)信息网
承办单位
北京仿真中心
北京航天情报与信息研究所
北京动力机械研究所
北京自动化控制设备研究所
北方科技信息研究所
柯桥区人民政府
浙江理工大学柯桥研究院
深圳航天科创实业有限公司
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询