A Bayesian method for load identification of powertrain mounting system with interval uncertainty
编号:171 访问权限:仅限参会人 更新:2021-09-01 17:49:27 浏览:243次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Abstract: It is very important to accurately identify the load of the vehicle in the working state for the study of vehicle vibration and noise. At present, the identification technology of dynamic load mainly focuses on the deterministic model, but there are always structural model errors in practical engineering. Bayesian method and interval theory can deal with unknown-but-bounded uncertainties in measurement noise and structural systems. In this paper, a time domain load identification method based on Gibbs sampling and a hybrid dynamic load identification method based on Bayesian and interval analysis are proposed. Firstly, the structural model error is considered as the overall Markov parameter matrix error, and the measurement noise is calculated together; secondly, considering the structural model error as interval parameter, the upper and lower load boundaries are obtained by combining interval analysis with Gibbs sampling method based on Taylor expansion. It is shown that the Gibbs sampling method based on the traditional state space equation is more sensitive to the type of input load under the action of three excitation forces at the same time, which means that the measurement of the fast changing pulse load requires less environmental noise and higher sampling frequency. The dynamic pair mass parameters are more sensitive than stiffness, and the uncertainty of dynamic load increases with the increase of parameter uncertainty. Therefore, this method is suitable for the case of less uncertainty. Finally, the impact test of force hammer verifies the universality of the proposed method.
 
关键词
Load identification; Gibbs sampling method; Bayes; Interval analysis
报告人
bo gao
Hebei University of Technology

稿件作者
bo gao Hebei University of Technology
Xiaoang Liu Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, Hebei University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月01日

    2022

    11月03日

    2022

  • 10月30日 2022

    初稿截稿日期

  • 11月09日 2022

    注册截止日期

主办单位
Qingdao University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询