An improved 2-D convolution neural network for fault diagnosis of rolling bearing based on vibration and sound data fusion
编号:169 访问权限:仅限参会人 更新:2021-09-01 17:46:31 浏览:224次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Rolling bearings are widely employed in rotating machinery. It’s of great importance to conduct the effective bearing fault diagnosis to guarantee the safety of machines. Vibration and sound are homology signals which contain some complementary information in characterizing the health states of machine. In order to make full use of the information in the vibration and sound signals to achieve higher accuracy of fault diagnosis, this paper proposed a vibration and sound fusion convolution neural network (VS-CNN) model. The proposed model adds a 2-D convolution layer before the classical 1-D CNN to automatically extract complementary features of sound and vibration signals and minimize the loss of information. An experiment on a rolling bearing test rig is carried out to verify the proposed VS-CNN method. Vibration and sound signals are collected synchronously at different working speeds and put into the model directly for training and testing. Results show that the proposed method can achieve high classification accuracy for rolling bearing fault diagnosis under nonstationary conditions. Its ability to deal with signals with strong noise is also verified by adding white Gaussian noise manually to the raw data. Compared with the classical machine learning method, the proposed method shows better diagnosis performance with raw signals as the input.
关键词
Rolling bearing,Fault diagnosis,Vibration and sound fusion,CNN
报告人
Sun Jiahao
Zhejiang University

稿件作者
Sun Jiahao Zhejiang University
Shixi Yang 浙江大学
Tu Yao Ltd;Hangzhou Steam Turbine & Power Group Co.
Jun He 浙江大学
Chenfang Wu 浙江大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月01日

    2022

    11月03日

    2022

  • 10月30日 2022

    初稿截稿日期

  • 11月09日 2022

    注册截止日期

主办单位
Qingdao University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询