Application of Residual Network based on Double Threshold Structure in Bearing Fault Diagnosis
编号:157 访问权限:仅限参会人 更新:2021-08-30 15:05:30 浏览:234次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
 Convolution neural network and its derivative network have been widely used in the field of image recognition, but its application in one-dimensional vibration data is not very wide. In this paper, residual network is used to identify the fault of bearing based on one-dimensional vibration data. Due to the actual bearing data will be mixed with noise and invalid data, Therefore, a residual network based on a double threshold is proposed in this paper. The threshold structure of the first layer is mainly used to remove invalid data, and the soft threshold structure of the second layer is mainly used to filter noise data. Compared with the residual network and residual shrinkage network, the combination of residual and double threshold structure has improved the fast convergence of the algorithm and the accuracy of diagnosis in bearing fault diagnosis.
 
关键词
residual network, double threshold, one-dimensional vibration data
报告人
Haiyang Lou
doctor Shijiazhuang Tiedao University

稿件作者
Haiyang Lou Shijiazhuang Tiedao University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月01日

    2022

    11月03日

    2022

  • 10月30日 2022

    初稿截稿日期

  • 11月09日 2022

    注册截止日期

主办单位
Qingdao University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询