A Similarity-based Feature Extraction Method for Remaining Useful Life Prediction of Bearings
编号:166 访问权限:仅限参会人 更新:2020-10-15 20:06:47 浏览:419次 口头报告

报告开始:2020年11月02日 10:00(Asia/Shanghai)

报告时间:15min

所在会场:[C] Electric Machine Design and Control [C2] Session 22 and Session 27

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In most power plants, electric power is generated by rotating machinery. With the rapid growth of the unit capacity, the working conditions of bearings are becoming more and more severe. In order to increase the reliability of the units, it is important to evaluate the remaining useful life of the bearings. In this paper, a similarity-based feature extraction method is proposed. The First Prediction Time (FPT) is determined by analyzing the difference of the standard deviation of the vibration data in single window. Then, a group of time and frequency-domain features are calculated and smoothed. The 1st to 3rd order differentials of a certain window length of feature sequence are gathered to reveal the trend characteristics. The similarity between feature matrices are used as the input of the regression model. The feature set based on proposed method shows its superiority on the prediction results than traditional features.
关键词
Similarity,Feature extraction,Remaining useful life
报告人
Yujie Zhao
Huazhong University of Science and Technology

稿件作者
Yujie Zhao Huazhong University of Science and Technology
Chaoshun Li Huazhong University of Science and Technology
Xin Hu Huazhong University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月02日

    2020

    11月04日

    2020

  • 10月27日 2020

    初稿截稿日期

  • 11月03日 2020

    报告提交截止日期

  • 11月04日 2020

    注册截止日期

  • 11月17日 2020

    终稿截稿日期

主办单位
IEEE IAS Student Chapter of Huazhong University of Science and Technology (HUST)
承办单位
Huazhong University of Science and Technology
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询