Differentially private nonlinear canonical correlation analysis
编号:97 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:539次 口头报告

报告开始:2020年06月08日 15:40(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS04] Structured Tensor And Matrix Methods For Sensing, Communications, And Machine Learning

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Canonical correlation analysis (CCA) is a well-documented subspace learning approach widely used to seek for hidden sources common to two or multiple datasets. CCA has been applied in various learning tasks, such as dimensionality reduction, blind source separation, classification, and data fusion. Specifically, CCA aims at finding the subspaces for multi-view datasets, such that the projections of the multiple views onto the sought subspace is maximally correlated. However, simple linear projections may not be able to exploit general nonlinear projections, which motivates the development of nonlinear CCA. However, both conventional CCA and its non-linear variants do not take into consideration the data privacy, which is crucial especially when coping with personal data. To address this limitation, the present paper studies differentially private scheme for nonlinear CCA. Numerical tests on real datasets are carried out to showcase the effectiveness of the proposed algorithms.
关键词
暂无
报告人
Yanning Shen
University of California, Irvine, USA

稿件作者
Yanning Shen University of California, Irvine, USA
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询