Differentially private nonlinear canonical correlation analysis
编号:97
访问权限:仅限参会人
更新:2020-08-05 10:17:28 浏览:539次
口头报告
摘要
Canonical correlation analysis (CCA) is a well-documented subspace learning approach widely used to seek for hidden sources common to two or multiple datasets. CCA has been applied in various learning tasks, such as dimensionality reduction, blind source separation, classification, and data fusion. Specifically, CCA aims at finding the subspaces for multi-view datasets, such that the projections of the multiple views onto the sought subspace is maximally correlated. However, simple linear projections may not be able to exploit general nonlinear projections, which motivates the development of nonlinear CCA. However, both conventional CCA and its non-linear variants do not take into consideration the data privacy, which is crucial especially when coping with personal data. To address this limitation, the present paper studies differentially private scheme for nonlinear CCA. Numerical tests on real datasets are carried out to showcase the effectiveness of the proposed algorithms.
稿件作者
Yanning Shen
University of California, Irvine, USA
发表评论