Enhanced DOA Estimation for MIMO radar in the Case of Limited Snapshots
编号:92 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:585次 口头报告

报告开始:2020年06月08日 14:40(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS11] Recent Advances In Beamforming Techniques And Applications

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Multiple-input-multiple-output (MIMO) radar is well-known for providing high-resolution direction-of-arrival (DOA) estimation by forming a large-scaled sum coarray utilizing waveform diversity. However, the sacrifice is that a large number of snapshots are required to estimate the sample covariance matrix. When the number of training snapshots is limited, the performance of subspace-based DOA estimation method, such as multiple signal classification (MUSIC), deteriorates due to the distortion of noise subspace. In order to improve the accuracy of DOA estimation using MIMO radar in the case of few snapshots, we propose a method to refine the covariance matrix iteratively. The sampled covariance matrix is iteratively refined by subtracting cross-correlation terms using generalized inner product based on the previous DOA estimates. Finally, the MUSIC algorithm is implemented based on the refined sample covariance matrix to update the DOA estimates until achieving termination condition. Simulation results demonstrate that the additional covariance matrix refinement step enhances the accuracy of DOA estimation using MIMO radar in the case of limited snapshots significantly.
关键词
MIMO radar; DOA Estimation; covariance matrix refinement; generalized inner product; generalized norm
报告人
Yanan Ma
Beihang University, China

稿件作者
Yanan Ma Beihang University, China
Xianbin Cao Beihang University, China
Xiangrong Wang Beihang University, China
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询