Spectral Algorithm for Shared Low-rank Matrix Regressions
编号:54 访问权限:仅限参会人 更新:2020-08-05 10:17:00 浏览:595次 口头报告

报告开始:2020年06月09日 14:40(Asia/Shanghai)

报告时间:20min

所在会场:[R] Regular Session [R04] Computational and Optimization Techniques for Multi-Channel Processing

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
We consider multiple matrix regression tasks that share common weights in order to reduce sample complexity. For this purpose, we introduce the common mechanism regression model which assumes a shared right low-rank component across all tasks, but allows an individual per-task left low-rank component. We provide a closed form spectral algorithm for recovering the common component and derive a bound on its error as a function of the number of related tasks and the number of samples available for each of them. Both the algorithm and its analysis are natural extensions of known results in the context of phase retrieval and low rank reconstruction. We demonstrate the efficacy of our approach for the challenging task of remote river discharge estimation across multiple river sites, where data for each task is naturally scarce. In this scenario sharing a low-rank component between the tasks translates to a shared spectral reflection of the water, which is a true underlying physical model. We also show the benefit of the approach in the setting of image classification where the common component can be interpreted as the shared convolution filters.
关键词
Phase Retrieval; Low-rank optimization; Multitask Learning
报告人
Yotam Gigi
Google Research & Hebrew University (HUJI), Israel

稿件作者
Yotam Gigi Google Research & Hebrew University (HUJI), Israel
Sella Nevo Google Research, Israel
Gal Elidan Google Research and HUJI, Israel
Avinatan Hassidim Google, Israel
Yossi Matias Google, Israel
Ami Wiesel The Hebrew University of Jerusalem, Israel
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询