Enhanced Online IVA with Switched Source Prior for Speech Separation
编号:160 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:555次 口头报告

报告开始:2020年06月08日 14:00(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS14] Dependent Source Separation

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Independent vector analysis (IVA) is a blind source separation (BSS) technique that has demonstrated efficiency in separating speech signals from their convolutive mixtures in the frequency domain. Particularly, it avoids the problematic permutation problem by using a multivariate source prior to model statistical inter dependency across the frequency bins of each source signal. The selection of the source prior is vital to the performance of the method. Practical real time systems require an online mode which is performed iteratively as signal data arrive. The performance of the online IVA is measured by the convergence time and steady state separation and accuracy. This paper proposes a novel switched source prior technique to improve the performance of the online IVA algorithm. The techniques switches between two source priors to acquire the better performance properties of both distributions at different stages of the learning algorithm. The switching process is controlled by an adaptive learning scheme as a function of proximity to the target solution. The experimental results demonstrate an enhanced separation performance using real room impulse responses and recorded speech signals.
关键词
Blind source separation (BSS); speech separation; independent vector analysis (IVA); online IVA; multivariate source prior
报告人
Suleiman Erateb
CU Coventry, United Kingdom (Great Britain)

稿件作者
Suleiman Erateb CU Coventry, United Kingdom (Great Britain)
Jonathon Chambers University of Leicester, United Kingdom (Great Britain)
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询