Blind source separation methods based on output nonlinear correlation for bilinear mixtures of an arbitrary number of possibly correlated signals
编号:152 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:527次 口头报告

报告开始:2020年06月08日 14:20(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS14] Dependent Source Separation

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Traditional Blind Source Separation (BSS) methods require quite restrictive properties from the source signals (typically, statistically independent or at least uncorrelated sources) and mixing transform (typically, linear instantaneous mixtures). In this paper, we address a much more complex case, where the considered deterministic source signals may be correlated (we only request the source vectors and some associated vectors to be linearly independent) and where the mixing transform is nonlinear (more precisely, bilinear, which is e.g. of high interest for Earth observation applications). We propose a separation principle leading to a new set of BSS algorithms applicable to an arbitrary number of sources and based on nonlinear correlation parameters. Moreover, we analyze the separability properties of this approach and thus show that it is guaranteed to separate the sources up to the trivial scale and permutation indeterminacies.
关键词
Blind source separation; Dependent sources; Bilinear mixtures; Product proportionality separation principle
报告人
Yannick Deville
University of Toulouse, France

稿件作者
Yannick Deville University of Toulouse, France
Shahram Hosseini University of Toulouse / CNRS / IRAP, France
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询