A Compressive Sensing Approach for Single-Snapshot Adaptive Beamforming
编号:109 访问权限:仅限参会人 更新:2020-08-05 10:17:28 浏览:504次 口头报告

报告开始:2020年06月08日 14:00(Asia/Shanghai)

报告时间:20min

所在会场:[S] Special Session [SS11] Recent Advances In Beamforming Techniques And Applications

视频 无权播放

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This paper introduces a compressive sensing approach for single-snapshot adaptive beamforming. The observation data model is considered as source components in additive noise, and then a compressive sensing formulation is introduced to estimate the parameters of the interference signals. That is, a LASSO regression problem is proposed and solved, yielding the directions as well as the powers of the interference signals. On the other hand, the noise power is estimated by means of averaging the squares of the difference between the observation data and the estimate of the source components. Finally, the interference-plus-noise covariance matrix is reconstructed and used for adaptive beamformer design. Simulation results show better performance of the proposed beamformer than several existing beamformers, in the case of a single snapshot.
关键词
Adaptive beamforming; single snapshot; compressive sensing; covariance matrix reconstruction; sparsity
报告人
Huiping Huang
Darmstadt University of Technology, Germany

稿件作者
Huiping Huang Darmstadt University of Technology, Germany
Abdelhak M Darmstadt University of Technology, Germany
Hing Cheung City University of Hong Kong, Hong Kong
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询