57 / 2019-12-11 02:13:00
A Variational Bayesian Approach to Direction Finding of Correlated Targets Using Coprime Array
全文录用
Jie Yang / Northwestern Polytechnical University, China
Yixin Yang / Northwestern Polytechnical University, China
In this paper, we develop a sparsity-aware algorithm for direction-of-arrival (DOA) estimation of correlated targets in the context of coprime array processing. The idea is to iteratively interpolate the observed data to a virtual nonuniform linear array (NLA) in order to raise the degrees of freedom (DOF). We derive the estimation procedures using variational inference for fully Bayesian estimation, where the current parameter estimates are used to interpolate the observed data better and thus increase the likelihood of the next parameter estimates. The novelties of our method lies in its capacity of detecting more correlated sources than the number of physical sensors. Simulated data from coprime arrays are used to illustrate the superior performance of the proposed approach as compared with other state-of-the-art compressed sensing reconstruction algorithms.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询