317 / 2020-01-06 11:09:00
Hyperspectral Image Clustering based on Variational Expectation Maximization
Hyperspectral Image clustering; undirected graphical model; variational expectation maximization,; spatial parameter
全文录用
Yuchen Jiao / Tsinghua University, China
Yirong Ma / 69010 Unit PLA, China
Yuantao Gu / Tsinghua University, China
Hyperspectral image clustering is an important and challenging problem, which aims to group image pixels according to the land cover information extracted from the spectrum. The spectrum observed at adjacent pixels are often highly-correlated, and leveraging such spatial correlation can greatly improve the clustering accuracy. Markov Random Field (MRF) is a powerful model to characterize such correlation. However, in this model the spatial parameter \beta often needs to be manually tuned, which brings difficulty in finding an optimal value. In this paper, we propose a novel hyperspectral clustering algorithm, which is able to learn parameter \beta from the data and thus achieves better performance. Specifically, we model the spectral information with Gaussian mixture model, and use variational expectation maximization method to complete the parameter estimation and clustering task. Experiments on both synthetic and real-world data sets verify the effectiveness of the proposed algorithm.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询