108 / 2019-12-14 09:27:00
On the convergence of Jacobi-type algorithms for Independent Component Analysis
independent component analysis; approximate tensor diagonalization; optimization on manifold; Jacobi-type algorithm; weak convergence; global convergence
全文录用
Jianze Li / Shenzhen Research Institute of Big Data, China
Konstantin Usevich / CNRS & Universit?de Lorraine, France
Pierre Comon / CNRS, University Grenoble Alpes, France
Jacobi-type algorithms for simultaneous approximate diagonalization of symmetric real tensors (or partially symmetric complex tensors) have been widely used in independent component analysis (ICA) because of its high performance. One natural way of choosing the index pairs in Jacobi-type algorithms is the classical cyclic ordering, while the other way is based on the Riemannian gradient in each iteration. In this paper, we mainly review our recent results in a series of papers about the weak convergence and global convergence of these Jacobi-type algorithms, under both of two pair selection rules. These results are mainly based on the Lojasiewicz gradient inequality.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询