48 / 2021-06-29 16:29:09
Effects of Nano-phases on microstructure and wear properties of Fe-based composite coating by laser cladding
Laser cladding; Remanufacturing; Microstructure; Nano-TiC; Nano-CeO2; Wear resistance
摘要录用
小霞 戚 / 山东大学可持续研究中心
燕乐 李 / 山东大学可持续研究中心
方义 李 / 山东大学可持续制造中心

   With the aim of remanufacturing high-value parts of shield tunneling machines (e.g. sealing track), Fe-based composite coatings were prepared by collaborative modification with Nano-TiC and Nano-CeO2 by laser cladding. The cladding composite powder with micro-nano structure was prepared by mechanical milling, and the microstructure, phase composition, microhardness and wear properties of the Fe-based coatings were studies. The results show that the Nano-TiC can effectively eliminate the defects such as cracks and holes and promote the transformation of columnar dendritic to petal-like dendritic. The size, morphology and agglomeration degree of TiC phase in coatings were significantly affected by the Nano-TiC content. With the addition of Nano-TiC (from 5% to 15%), the hardness of modified coatings decreases gradually and the wear volume decreases first and then increases (lowest for 10%Nano-TiC). Based on the above research, the influence of the content of nano-CeO2 was further studied. The agglomeration degree of Nano-TiC and the wear assistance of the coatings are significantly affected by the content of Nano-CeO2. Compared with the Fe55 coating, the wear volume of Fe55+10%Nano-TiC+1%Nano-CeO2 coating is decreased by about 49%. Moreover, the Fe-based coating is abrasive wear and fatigue wear by observing the wear surface morphology. This paper provides experimental guidance for application of the Fe55 coating in wear environment.

重要日期
  • 会议日期

    12月03日

    2021

    12月05日

    2021

  • 07月25日 2021

    提前注册日期

  • 12月01日 2021

    初稿截稿日期

  • 12月03日 2021

    注册截止日期

主办单位
中国机械工程学会表面工程分会
承办单位
山东理工大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询