Using productive vocabulary knowledge and lexical diversity measures to predict different IELTS writing task scores
编号:79 访问权限:仅限参会人 更新:2020-08-10 13:54:58 浏览:233次 口头报告

报告开始:暂无开始时间(12)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
       The current paper partially replicates an earlier study (Treffers-Daller, Parslow, & Williams, 2018) indicating that lexical diversity (LD) measures can help to discriminate between CEFR levels. We adapt Treffers-Daller et al.’s study to investigate the extent to which vocabulary measures are able to predict second language (L2) writing task (International English Language Testing System (IELTS)) scores. We use the same LD measures as in the earlier paper, along with a variety of vocabulary tools. In addition, the study adopts a recent approach (Clenton, De Jong, Clingwall, & Fraser, 2020) and investigates the multi-faceted construct of participant productive vocabulary knowledge. Our aim, therefore, is to contribute to discussions on how productive vocabulary knowledge and lexical diversity measures can help in the assessment of second language learners’ written work at different proficiency levels.
        We assess (n = 70) L1 Japanese undergraduate learners of (L2) English (CEFR B2). We adopt three different productive vocabulary tasks: Lex30 (Meara & Fitzpatrick, 2000) (a task based on word association responses); G_Lex (Fitzpatrick & Clenton, 2017) (a gap-fill task); and, the Productive Vocabulary Levels Test (PVLT; Laufer & Nation, 1999) (a sentence completion task). The performance of each of the productive vocabulary tasks has been shown (Clenton et al., 2020) to vary according to the quantity and quality of the productive vocabulary knowledge elicited.  Participants responded to (6) different IELTS writing questions. For processing, we maintained a constant text length, and following recent research (Kyle, 2020) we flemmatized all writing samples.
       Our results reflect Treffers-Daller et al.’s (2018) findings to the extent that basic measures of LD such as TTR (Templin, 1957) explain more variance in writing scores than sophisticated measures such as D (Malvern et al. 2004) or MTLD (McCarthy 2005). A simple count of different words (defined as flemmas) proved to be the best predictor of variance in overall IELTS essay scores. Our data also reveal that higher IELTS task scores tended to reflect a higher quality of productive vocabulary knowledge. We discuss these findings in terms of second language acquisition, with specific implications for pedagogy.
 
关键词
productive vocabulary knowledge; lexical diversity; IELTS writing
报告人
Yajie Li
Hiroshima University

Jon Clenton
Hiroshima University

Simon Fraser
Hiroshima University

稿件作者
Yajie Li Hiroshima University
Jon Clenton Hiroshima University
Simon Fraser Hiroshima University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月16日

    2020

    10月18日

    2020

  • 09月05日 2020

    报告提交截止日期

  • 10月08日 2020

    摘要截稿日期

  • 10月08日 2020

    摘要录用通知日期

  • 10月14日 2020

    初稿截稿日期

  • 10月14日 2020

    初稿录用通知日期

  • 10月18日 2020

    注册截止日期

主办单位
中国英汉语比较研究会英语教学研究分会
承办单位
北京师范大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询