589 / 2019-03-01 08:21:11
Revisiting Kevin Lynch: Analysis of urban perception by deep convolutional neural network
Convolution neural network; Deep learning; Image classification,urban planning,urban design
终稿
Yuji Yoshimura / MIT
Ian Seiferling / MIT
Ruixian Ma / MIT
Zhoutong Wang / Harvard GSD
Gary Hack / MIT
Carlo Ratti / MIT
This paper discusses the visual differentiation of districts of the city and quantifies the legibility of the cityscape. Much of the research in district legibility has been done on the basis of interviewing subjects and having them make maps of the way they understand the city. The question we ask here is whether the same ends can be achieved by quantitatively identifying the visual features that make a district unique. For this purpose, we apply a deep convolutional neural net-work (DCNN) to a large-scale dataset collected through Google Street View (GSV). The DCNN enables us to segment the urban elements in each image. Comparing the results can elucidate the degree of visual heterogeneity, and the unsupervised clustering analysis explores the optimized number for grouping them over the city. The results show overall consistency with the previous results obtained by other meth-ods, indicating that the capacity of the machine’s eye can capture the visual similarities among territories.
重要日期
  • 会议日期

    07月08日

    2019

    07月12日

    2019

  • 06月28日 2019

    初稿截稿日期

  • 07月12日 2019

    注册截止日期

联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询