1512 / 2019-08-13 08:28:56
Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol
摘要待审
Soils play a vital role in the global carbon (C) cycle, yet little is known about the calcium (Ca)-mediated stabilization of soil organic carbon (SOC) in calcareous soils. With wet sieving, density fractionation and an incubation experiment from field soils, we investigated the effects of long-term fertilization on the Ca-mediated stabilization of aggregate-associated organic C and on the SOC stock at a soil depth of 0-20 cm in a reclaimed Cambisol on the Loess Plateau of China. Compared to the initial soil, after ten years the SOC stock increased by 50%, 76%, 94% and 110% in soils amended with no fertilizer (control), 100% chemical fertilizer, 50% chemical fertilizer plus 50% chicken manure compost and 100% chicken manure compost, respectively. The specific C mineralization rate (SCMR, rate per unit SOC) decreased as silt and clay > macroaggregate > microaggregate, indicating that SOC in microaggregates was more stable than in macroaggregates and the silt and clay fraction. The exchangeable Ca in the bulk soil (P < 0.001) and soil aggregates (P < 0.001) were positively correlated with the SOC, whereas the Ca carbonate (CaCO3) was negatively correlated with the SCMR (P < 0.001). The application of compost not only increased the exogenous C inputs but also promoted the transformation of CaCO3 to exchangeable Ca compared with the sole chemical fertilization. Furthermore, organic fertilization significantly increased the organic C in the heavy fraction (> 2.0 g cm-3) compared with the sole chemical fertilization, which was positively correlated with the mass proportion of macroaggregates (P < 0.001). These results indicate that organic fertilization can enhance the availability of Ca for C binding possibly by forming organo-Ca complexes, which in turn improve soil aggregation, and thus contribute to a long-term SOC sequestration in reclaimed soils of the Loess Plateau of China.
重要日期
  • 会议日期

    10月12日

    2019

    10月15日

    2019

  • 09月30日 2019

    初稿截稿日期

  • 10月15日 2019

    注册截止日期

  • 07月21日 2020

    报告提交截止日期

主办单位
青年地学论坛理事会
承办单位
中国科学院青海盐湖研究所
中国科学院西北高原生物研究所
青海师范大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询