1063 / 2019-06-27 10:45:10
基于机器学习算法的沉积物声学预测模型
摘要待审
How to improve the accuracy of compressional wave speed prediction has always been one of the basic research subjects in geoacoustics research. Due to the stability of granularity, whether in the laboratory or in the seabed environment, the relationship between granularity and compressional wave speed is an important means of wave speed inversion. In this article, we combined the Machine Learning algorithm with nine granularity parameters (mean grain size, median grain size, skewness, kurtosis, sorting coefficient, gravel, sand, silt, and clay content respectively.) to analysis of the effect of granularity on sound speed. As a result, the sound speed-granularity predictive model was established, and the accuracy of the sound speed obtained according to the predictive model is higher than that of the multi-parameters equations. Based on the predictive model, the feature selection was conducted and the results show that the most influential parameter of granularity is mean grain size and second is silt content. Furthermore, this model can also predict the sound speed with high precision in the absence of partial parameters, which can be a useful tool for ocean engineering and seismic inversion. Machine learning provides a new solution for more efficient sound speed prediction systems.
重要日期
  • 会议日期

    10月12日

    2019

    10月15日

    2019

  • 09月30日 2019

    初稿截稿日期

  • 10月15日 2019

    注册截止日期

  • 07月21日 2020

    报告提交截止日期

主办单位
青年地学论坛理事会
承办单位
中国科学院青海盐湖研究所
中国科学院西北高原生物研究所
青海师范大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询